Validation
Welcome to the Privacera Cloud DataPlane Validation User Guide. This guide is designed to assist you in validating your Privacera Cloud DataPlane setup, ensuring its proper functionality and alignment with your data governance and privacy management requirements. Effective validation is essential to maintaining the integrity and security of your data environment, and this guide will walk you through the necessary steps to achieve that goal. Whether you are a new user or seeking to ensure the ongoing performance of your Privacera Cloud DataPlane, this guide will provide you with the insights and instructions you need. Let's begin the journey to validate your data governance practices within the Privacera Cloud DataPlane.
To use JWT in Privacera Databricks integration, you need to copy the JWT token file to the cluster.
Sample command to read s3 file can be executed as follows:
%python readFilePath = "s3a://mybucket/sample-data/sample.csv" df = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load(readFilePath) df.show(2);
Audit will show the JWT payload username.
This section provides instructions to validate Open Source Trino (OST)
Run the following command to start trino CLI
Note
Replace the
<user_name>
and<catalog_name>
with their actual values before executing the command.Example 23. For example,The value for the
<catalog_name>
can betpch
,hive
,iceberg
, etc.cd ~/ ./trino – user <user_name> –catalog <catalog_name>
tpch
Catalog
Perform following steps to validate the tpch
catalog for OST.
Run the following command to start Trino CLI with the
tpch
catalog:trino --catalog tpch --user Sally
Run the following command to use
SF1
database:use sf1;
Run the following command to select
*
from customer table:select * from customer;
hive
Catalog
Perform following steps to validate the hive
catalog for OST.
Run the following command to start Trino CLI with the
hive
catalog:./trino --catalog hive --user Sally
Run the following command to create schema:
Note
Replace the
{BUCKET_NAME}
and{FOLDER_NAME}
with their actual values before executing the command.create schema customer_sales_schema' WITH (LOCATION = 's3://{BUCKET_NAME}/{FOLDER_NAME}/customer_sales_schema');
Run the following command to create a
sales_data
table:CREATE TABLE customer_sales_schema.sales_data (id int,country varchar,region varchar,city varchar,name varchar,dob date);
Run the following command to insert the data into the
sales_data
table:insert into sales_data values (1,'US','Middle Atlantic','Williamsbury','Jennifer',DATE('2008-08-31')),(2,'US','Middle Atlantic','Angelland','Crystal',DATE('2019-05-02')),(3,'UK','New England','Connecticut','Daniel',DATE('2019-05-03')),(4,'US','Mountain','Palmertown','Sarah',DATE('2019-05-23')),(5,'US','East North Central','Nicholsonfort','Timothy',DATE('2019-05-01'));
Run the following command to select
*
fromsales_data
table:select * from sales_data;
iceberg
Catalog
Perform following steps to validate the iceberg
catalog for OST.
Run the following command to start Trino CLI with the
iceberg
catalog:./trino --catalog iceberg --user Sally
Run the following command to create schema:
Note
Replace the
{BUCKET_NAME}
and{FOLDER_NAME}
with their actual values before executing the command.create schema customer_sales_schema' WITH (LOCATION = 's3://{BUCKET_NAME}/{FOLDER_NAME}/customer_sales_schema');
Run the following command to create a
sales_data
table:CREATE TABLE customer_sales.sales_data (id int,country varchar,region varchar,city varchar,name varchar,dob date);
Run the following command to insert the data into the
sales_data
table:insert into customer_sales.sales_data values (1,'US','Middle Atlantic','Williamsbury','Jennifer',DATE('2008-08-31')),(2,'US','Middle Atlantic','Angelland','Crystal',DATE('2019-05-02')),(3,'UK','New England','Connecticut','Daniel',DATE('2019-05-03')),(4,'US','Mountain','Palmertown','Sarah',DATE('2019-05-23')),(5,'US','East North Central','Nicholsonfort','Timothy',DATE('2019-05-01'));
Run the following command to select
*
fromsales_data
table:select * from customer_sales.sales_data;